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With the aid of the integral heat-balance method an analytical solution of the problem of unsteady-state heat
conduction has been obtained for an infinite plate with a variable initial condition. To increase the accuracy
of solution by the integral method additional boundary conditions are introduced which are determined from
the initial differential equation and basic boundary conditions, including those prescribed at the temperature
perturbation front.

Introduction. Among approximate analytical methods there are those into which the notion of the temperature
perturbation front is introduced. With such an approach, the process of heating (cooling) is formally divided into two
stages: the first is characterized by the gradual motion of the temperature perturbation front from the surface to the
center of a body and the second — by the change in the temperature over the entire volume of the body until the
development of a steady state. The finite velocity of the temperature perturbation front motion is taken into account
by introducing a new function q1(Fo) called the penetration depth (the depth of a thermal layer) [1–6]. The merit of
these methods is the possibility of obtaining simple (in form) analytical solutions for both regular and irregular heat
conduction processes. Among the disadvantages there is the necessity of a prior selection of the coordinate dependence
for the temperature function sought. In the majority of the works mentioned above a quadratic or cubic parabola is
taken to represent the temperature profile. Such ambiguity of the solution leads to the problem of its accuracy, since,
by adopting beforehand a particular profile, each time we will obtain different results.

The obvious way for increasing the accuracy of solution is approximation of the temperature function by
higher-degree polynomials. However, to determine their unknown coefficients their initial boundary conditions turn out
to be insufficient. In view of this, one has to employ additional boundary conditions. In the present work, such con-
ditions are obtained from the initial differential equation with the use of basic boundary conditions and the conditions
prescribed at the temperature perturbation front.

Statement of the Problem. As a specific example, we consider a boundary-value problem of unsteady-state
heat conduction with linear distribution of initial temperature over the plate thickness. The mathematical statement of
the problem in this case has the form

∂T (x, τ)

∂τ
 = a 

∂2
T (x, τ)

∂x
2  ,   τ > 0 ,   0 < x < δ ; (1)

T (x, 0) = T0 − 
x
δ

 (T0 − Tw) ; (2)

T (0, τ) = T (δ, τ) = Tw . (3)

We introduce the following dimensionless quantities:
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Θ = 
T (x, τ) − Tw

T0 − Tw

 ,   ξ = 
x

δ
 ,   Fo = 

aτ

δ2
 .

In view of the notation adopted, problem (1)–(3) takes the form

∂Θ (ξ, Fo)

∂Fo
 = 

∂2Θ (ξ, Fo)

∂ξ2  ,   Fo > 0 ,   0 < ξ < 1 ; (4)

Θ (ξ, 0) = 1 − ξ ; (5)

Θ (0, Fo) = 0 ; (6)

Θ (1, Fo) = 0 . (7)

The process of heat transfer will be divided into two stages in time: 1) 0 ≤ Fo ≤ Fo1, where Fo1 is the time
needed by the temperature perturbation front to reach the coordinate ξ = 1; 2) Fo1 ≤ Fo < ∞, where heat transfer occu-
pies the entire volume of the body till a stationary regime is attained.

To fix the temperature perturbation front, we will introduce a boundary moving in time and separating the in-
itial region 0 ≤ ξ ≤ 1 into two subregions: 0 ≤ ξ ≤ q1(Fo) and q1(Fo) ≤ ξ ≤ 1, where q1(Fo) is the function which deter-
mines the advancement of the interface along the coordinate ξ depending on time. Note that in the region located
beyond the temperature perturbation front the initial temperature is preserved (Fig. 1a). The first stage of the process
terminates as soon as the position q1(Fo) = 1 is reached by the moving boundary.

In view of the fact that the new function q1(Fo) has been introduced into consideration the conditions fulfilled
at the temperature perturbation front should be added. They are found from initial condition (5) and have the form

Θ (ξ, Fo)
ξ=q1

 = 1 − q1 ,   
∂Θ (ξ, Fo)

∂ξ


ξ=q1

 = − 1 . (8)

The first condition of (8) means the equality of temperature at the temperature perturbation front to the initial tempera-
ture of the body, whereas the second condition shows that the line of the temperature profile is tangent to the line of
the initial temperature Θ(ξ, 0) = 1 − ξ (see Fig. 1a).

Thus, for the first stage of the process one has to solve Eq. (4) with boundary conditions (6) and (8). Here,
boundary condition (7) is not needed, since it does not influence the process of heat transfer in its first stage.

Fig. 1. Calculation scheme of heat transfer.
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Now impose the requirement that the sought-for solution of problem (4)–(6), (8) could satisfy not the initial
equation (4), but rather that averaged over the thermal layer thickness. For this purpose, we take an integral of Eq. (4)
along the coordinate ξ within the limits from zero to q1(Fo). This yields an integral condition (heat balance integral),

   ∫ 
0

q1(Fo)

  
∂Θ (ξ, Fo)

∂Fo
 dξ =   ∫ 

0

q1(Fo)

  
∂2Θ (ξ, Fo)

∂ξ2
 dξ .

(9)

Having determined the integral on the right-hand side of relation (9), we find the final expression for the heat balance
integral

   ∫ 
0

q1(Fo)

  
∂Θ (ξ, Fo)

∂Fo
 dξ =

∂Θ (ξ, Fo)
∂ξ



ξ=q1

 −
∂Θ (ξ, Fo)

∂ξ


ξ=0

 . (10)

The solution of problem (4)–(6), (8) is sought in the form of the polynomial

Θ (ξ, Fo) = ∑ 

k=0

n

ak (q1) ξ
k
 . (11)

In order to find the solution of problem (4)–(8) in the first approximation we substitute Eq. (11), limiting our-
selves by three terms of the series, into boundary conditions (6) and (8). From this, to determine the unknown coeffi-
cients ak (k = 0, 1, 2) we obtain a system of three algebraic linear equations. Relation (11), with allowance for the
coefficients ak found from the solution of this system, will take the form

Θ (ξ, Fo) = 2 
ξ

q1

 − 
ξ2

q1
2
 − ξ .

(12)

Having substituted Eq. (12) into the heat balance integral (10), we come to an ordinary differential equation for the
unknown function q1(Fo);

q1 
dq1

dFo
 = 6 . (13)

Dividing the variables in (13) and intigrating, with the initial condition q1(0) = 0 we obtain

q1 (Fo) = √12Fo . (14)

Assuming in Eq. (14) that q1 = 1, we find the time of termination of the first stage of the process Fo = Fo1 =
0.0833333. The results of calculations by Eq. (12) (Fig. 2) differ from the temperature values obtained by the pivot
method of [7] by no more than 4%.

To raise the accuracy of analytical solution one has to increase the number of series terms in Eq. (11). How-
ever, when the number of coefficients ak (q1) exceeds 3, additional boundary conditions should be used to determine
them [6, 8, 9]. For this purpose, we will successively differentiate boundary conditions (6), (8) with respect to the
variable Fo and Eq. (4) — to variable ξ. So that the first additional boundary condition could be obtained, we differ-
entiate Eq. (6) with respect to Fo:

∂Θ (0, Fo)
∂Fo

 = 0 . (15)

We write Eq. (4) for the point ξ = 0:
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∂Θ (0, Fo)

∂Fo
 = 

∂2Θ (ξ, Fo)

∂ξ2


ξ=0

 . (16)

Comparing Eqs. (15) and (16), we obtain the first additional boundary condition:

∂2Θ (ξ, Fo)

∂ξ2


ξ=0

 = 0 . (17)

To obtain the second additional boundary condition, we differentiate the first relation of (8) with respect to Fo:

∂Θ (ξ, Fo)
∂Fo



ξ=q1

 + 
∂Θ (ξ, Fo)

∂ξ


ξ=q1

 
dq1

dFo
 = − 

dq1
dFo

 . (18)

We write Eq. (4) for ξ = q1(Fo):

∂Θ (q1, Fo)

∂Fo
 = 

∂2Θ (ξ, Fo)

∂ξ2


ξ=q1

 . (19)

Comparing Eqs. (18) and (19), subject to the second relation of (8), we obtain the second additional boundary condition:

∂2Θ (ξ, Fo)

∂ξ2


ξ=q1

 = 0 . (20)

In order to obtain the third additional boundary condition we differentiate the second relation of (8) with respect to Fo:

∂2Θ (ξ, Fo)
∂Fo∂ξ



ξ=q1

 = 0 . (21)

We differentiate Eq. (4) with respect to ξ and write the resulting relation for the point ξ = q1(Fo):

∂2Θ (ξ, Fo)

∂Fo∂ξ


ξ=q1

 = 
∂3Θ (ξ, Fo)

∂ξ3


ξ=q1

 . (22)

Fig. 2. Distribution, in the plate, of dimensionless temperature calculated: 1)
from Eq. (12) (a first approximation); 2) by the pivot method [9]; 3) from Eq.
(26) (a second approximation).
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Comparing Eqs. (21) and (22), we obtain the third additional boundary condition:

∂3Θ (ξ, Fo)

∂ξ3


ξ=q1

 = 0 . (23)

With the aid of the additional boundary conditions (17), (20), (23) and prescribed conditions (6) and (8) we
may determine already six coefficients of polynomial (11). Substituting (11), limiting ourselves to six terms of the se-
ries, into all of the above-given boundary conditions, we obtain the following system of algebraic linear equations for
the coefficients ak (k = 0, 5

___
):


a0 + a1ξ + a2ξ

2
 + a3ξ

3
 + a4ξ

4
 + a5ξ

5
ξ=0

 = 0 ,   a0 + a1q1 + a2q1
2
 + a3q1

3
 + a4q1

4
 + a5q1

5
 = 1 − q1 ,

a1 + 2a2q1 + 3a3q1
2
 + 4a4q1

3
 + 5a5q1

5
 = − 1 ,   2a2 + 6a3ξ + 12a4ξ

2
 + 20a5ξ

3
ξ=0

 = 0 ,

2a2 + 6a3q1 + 12a4q1
2
 + 20a5q1

3
 = 0 ,  6a3 + 24a4q1 + 60a5q1

2
 = 0 . 

(24)

It follows from the first and fourth equations of system (24) that a0 = 0 and a2 = 0; for the remaining coefficients
ak its solution yields

a1 = − (2q1 − 5) ⁄ 2q1 ,   a3 = − 5 ⁄ q1
3
 ,   a4 = 5 ⁄ q1

4
 ,   a5 = − 3 ⁄ 2q1

5
 . (25)

Relation (11), with allowance for the obtained values of coefficients ak (k = 0, 5
___

), takes the form

Θ (ξ, Fo) = 1 − ξ − 



1 + 

3
2

 
ξ
q1




 



1 − 

ξ
q1





4

 . (26)

Substitution of Eq. (26) into the heat balance integral (10) yields an ordinary differential equation for the unknown
function q1(Fo):

q1 
dq1

dFo
 = 10 . (27)

Separating the variables in Eq. (27) and integrating, under the initial condition q1(0) = 0, we obtain

q1 (Fo) = √20Fo . (28)

Assuming in Eq. (28) that q1 = 1, we find the time of termination of the first stage of the process in the second ap-
proximation Fo = Fo1 = 0.05.

Relation (26) and (27) determine the solution of problem (4)–(8) in the second approximation of the first
stage of the process. The results of calculations by Eq. (26) and comparison of these results with those obtained by
the pivot method of [9] are presented in Fig. 2. We may conclude that the temperatures given by Eq. (26) differ from
those obtained by the pivot method by no more than 0.5%.

Figure 3 presents the graph of the dependence of the temperature perturbation front on dimensionless time. Its
analysis shows that the most intense mixing of this front along the coordinate ξ occurs during a very short initial pe-
riod of time. In particular, the time needed for the moving boundary to attain the coordinate ξ = 0.05 is Fo =
1.25⋅10−4. From this we find the average velocity of the temperature perturbation front motion within the range
0 ≤ ξ ≤ 0.05. We take the following initial data: a = 12.5⋅10−6 m2/sec; δ = 0.01 m. The dimensionless distance ξ =
0.05 in a dimensional form corresponds to x = ξδ = 0.05⋅0.01 = 5⋅10−4 m. This is the distance traversed by the tem-
perature perturbation front in time τ = Foδ2 ⁄ a = 1⋅10−3 sec. From this the average velocity of motion is vav = x ⁄ τ =
0.5 m/sec. The average velocity within the ranges 0 ≤ ξ ≤ 0.01 (Fo = 5⋅10−6) and 0 ≤ ξ ≤ 0.001 (Fo = 5⋅10−8) will be
equal to vav = 2.5 and 25 m/sec, respectively. Consequently, with a decrease in the considered range along the coor-
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dinate the average velocity of the temperature perturbation front motion increases substantially and it tends to infinity
when ∆x → 0.

The second stage of the thermal process, which corresponds to the time Fo ≥ Fo1, is characterized by tempera-
ture variations already over the entire section of the plate till a stationary regime is attained. At this stage the notion
of a thermal layer loses its meaning, and as a generalized coordinate we take the scalar value of the temperature gra-
dient on the plate surface (see Fig. 1b):

grad Θ (1, Fo) = 
∂Θ (1, Fo)

∂ξ
 = q2 (Fo) .

(29)

In this case, the mathematical statement of the problem has the form

∂Θ (ξ, Fo)

∂Fo
 = 
∂2Θ (ξ, Fo)

∂ξ2
 ,   Fo > Fo1 ,   0 < ξ < 1 ; (30)

Θ (ξ, Fo1) = (1 − ξ) ξ ; (31)

Θ (0, Fo) = 0 ;   Θ (1, Fo) = 0 . (32)

As the initial condition we adopt the distribution of temperature at the end of the first stage of the process (the first
approximation, see Eq. (12) at q1(Fo1) = 1).

In view of the fact that the new function q2(Fo) is introduced into consideration, one has to add the corre-
sponding boundary condition:

∂Θ (1, Fo)
∂ξ

 = q2 (Fo) . (33)

The heat balance integral for the second stage of the thermal process has the form

 ∫ 
0

1
∂Θ (ξ, Fo)

∂Fo
 dξ = 

∂Θ (1, Fo)
∂ξ

 − 
∂Θ (0, Fo)

∂ξ
 = q2 (Fo) − 

∂Θ (0, Fo)
∂ξ

 . (34)

Just as for the first stage, the sought-for temperature profile will be represented as a polynomial of degree n:

Θ (ξ, Fo) = ∑ 

k=0

n

bk (q2) ξ
k
 . (35)

Fig. 3. Motion of the temperature perturbation front along the coordinate ξ de-
pending on the dimensionless time Fo.
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To find the solution of problem (30)–(33) in the first approximation we substitute Eq. (35) (limiting ourselves
to three terms of the series) into boundary conditions (32) and (33). From this, to determine the unknown coefficients
bk (k = 0, 1, 2), we obtain a system of three algebraic linear equations. Subject to the coefficients bk found from the
solution of this system, the relation (35) takes the form

Θ (ξ, Fo) = q2ξ (ξ − 1) . (36)

Substituting Eq. (36) into the heat balance integral (34), for the unknown function q2(Fo) we write the ordi-
nary differential equation

dq2

dFo
 = − 12q2 . (37)

Dividing the variables in Eq. (37) and integrating we obtain

q2 (Fo) = C exp [− 12Fo] . (38)

The integration constant C is determined from the initial condition of the form

q2 (Fo1) = 
∂Θ (ξ, Fo1)

∂ξ


ξ=1

 = − 1 . (39)

Relation (39) is obtained from Eq. (12) at Fo = Fo1, q1 = 1, and ξ = 1. After the integration constant is defined, re-
lation (38) takes the form

q2 (Fo) = − exp [− 12 (Fo − Fo1)] . (40)

Substituting Eq. (40) into Eq. (36), we find the solution of problem (30)–(33) in the first approximation of the second
stage of the process:

Θ (ξ, Fo) = ξ (1 − ξ) exp [− 12 (Fo − Fo1)] . (41)

By performing direct substitution, we can see that relation (41) exactly satisfies the heat balance integral (34), bound-
ary conditions (32) and (33), as well as the initial condition (31). The results of calculations by Eq. (41), as well as
by the pivot method, are presented in Fig. 4. Their analysis allows the conclusion that the maximum difference of the
results obtained from Eq. (41) from the temperature values found by the pivot method does not exceed 8%.

Fig. 4. Distribution, in the plate, of dimensionless temperature calculated: 1)
from Eq. (41) (a first approximation); 2) by the pivot method [9]; 3) from Eq.
(55) (a second approximation).
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For Fo1 we took the value Fo1 = 0.0833333 obtained in the first approximation of the first stage of the proc-
ess. To raise the accuracy, we find the solution of problem (30)–(33) in the second approximation employing addi-
tional boundary conditions. To obtain them, we differentiate boundary conditions (32) and (33) with respect to the
variable Fo:

∂Θ (0, Fo)
∂Fo

 = 0 ,   
∂Θ (1, Fo)

∂Fo
 = 0 ,   

∂2Θ (1, Fo)
∂Fo∂ξ

 = 
dq2

dFo
 . (42)

Writing Eq. (30) for the point ξ = 0 and comparing the resulting expression with the first relation from (42),
we obtain the first additional boundary condition:

∂2Θ (ξ, Fo)

∂ξ2


ξ=0

 = 0 . (43)

Comparison of Eq. (30) at the point ξ = 1 with the second relation from (42) allows us to formulate the second ad-
ditional boundary condition:

∂2Θ (ξ, Fo)

∂ξ2


ξ=1

 = 0 . (44)

We differentiate Eq. (30) with respect to the variable ξ and write the resulting relation for the point ξ = 1:

∂2Θ (ξ, Fo)
∂Fo∂ξ



ξ=1

 = 
∂3Θ (ξ, Fo)

∂ξ3


ξ=1

 . (45)

Comparing the third relation from (42) with relation (45), we obtain the third additional boundary condition:

∂3Θ (ξ, Fo)

∂ξ3


ξ=1

 = 
dq2

dFo
 . (46)

Having substituted Eq. (35), limiting ourselves to six terms of the series, into boundary conditions (32), (33),
(43), (44), and (46), for the unknown coefficients bk (k  = 0, 5

___
) we obtain the following system of algebraic linear

equations:


b0 + b1ξ + b2ξ

2
 + b3ξ

3
 + b4ξ

4
 + b5ξ

5
ξ=0

 = 0 ,   b0 + b1 + b2 + b3 + b4 + b5 = 0 ,

b1 + 2b2 + 3b3 + 4b4 + 5b5 = q2 ,   2b2 + 6b3ξ + 12b4ξ
2
 + 20b5ξ

3
ξ=0

 = 0 ,

2b2 + 6b3 + 12b4 + 20b5 = 0 ,   6b3 + 24b4 + 60b5 = dq2
 ⁄ dFo .

(47)

From the first and fourth equations of system (47) it follows that b0 = 0; b2 = 0; for the remaining coefficients its
solution yields

b0 = 0 ,   b1 = − 
3

2
 q2 − 

1

24
 
dq2

dFo
 ,   b2 = 0 ,

b3 = 5q2 + 
1

4
 
dq2

dFo
 ,    b4 = − 5q2 − 

1

3
 
dq2

dFo
 ,   b5 = 

3

2
 q2 + 

1

8
 
dq2

dFo
 . (48)
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Substituting the values found for the coefficients bk (k = 0, 5
___

) into Eq. (35), we obtain

Θ (ξ, Fo) = 
1
2

 3ξ
5
 − 10ξ4

 + 10ξ3
 − 3ξ q2 + 

1
24

 3ξ
5
 − 8ξ4

 + 6ξ3
 − ξ 

dq2

dFo
 . (49)

After the substitution of Eq. (49) into the heat balance integral (34) we arrive at the following ordinary differential
equation for the unknown function q2(Fo):

d
2
q2

dFo
2 + 70 

dq2

dFo
 + 600q2 = 0

(50)

with boundary conditions

q2 (Fo1) = − 1 ,    
dq2 (Fo1)

dFo



Fo=Fo1

 = 0 . (51)

The characteristic equation of the differential equation (50) has the form

r
2
 + 70r + 600 = 0 .

Its roots are r1 = −60 and r2 = −10. From this, the general solution of Eq. (50) is written as

q2 = C1 exp (− 60Fo) + C2 exp (− 10Fo) . (52)

The integration constants C1 and C2 are determined from boundary conditions (51):

C1 = 0.2 exp (60Fo1) ,   C2 = −1.2 exp (10Fo1) . (53)

Subject to (53), Eq. (52) yields

q2 (Fo) = 0.2 exp [− 60 (Fo − Fo1)] − 1.2 exp [− 10 (Fo − Fo1)] . (54)

Substituting Eq. (54) into Eq. (49), we find the final expression to determine the temperature in the second
approximation of the second stage of the process:

Θ (ξ, Fo) = 1.3ξ − 3ξ3
 + 2ξ4

 − 0.3ξ5
 exp [− 10 (Fo − 0.05)] −

− 0.8ξ − 4ξ3
 + 5ξ4

 − 1.8ξ5
 exp [− 60 (Fo − 0.05)] .

(55)

For Fo in Eq. (55) we took the value Fo1 = 0.05 obtained in the second approximation of the first stage of the proc-
ess (see Eq. (28) at q1 = 1).

In order to derive additional boundary conditions in the subsequent approximations of both the first and sec-
ond stages of the process it is necessary to differentiate the additional boundary conditions of the second approxima-
tion in the variable Fo and to differentiate twice the initial differential equation in ξ and apply it at the points ξ = 0
and ξ = 1. Comparing the resulting relations, we find the following three additional boundary conditions that allow us
to determine the solution of the problem in the third approximation:

for the first stage of the process

∂4Θ (0, Fo)

∂ξ4  = 0 ,   
∂4Θ (q1, Fo)

∂ξ4
 = 0 ,   

∂5Θ (q1, Fo)

∂ξ5
 = 0 ;
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for the second stage of the process

∂4Θ (0, Fo)

∂ξ4
 = 0 ,   

∂4Θ (1, Fo)

∂ξ4
 = 0 ,    

∂5Θ (1, Fo)

∂ξ5  = 0 .

Analogously, one can obtain additional boundary conditions for subsequent approximations too.
The results of calculations by Eq. (55) and by the pivot method are presented in Fig. 4. Their analysis allows

the conclusion that the temperature values given by Eq. (52) virtually coincide with those obtained by the pivot
method.

CONCLUSIONS

1. Based on the integral heat balance method with the use of the notion of the temperature perturbation front
and additional boundary conditions, analytical solutions  have been obtained for  regular and irregular processes of
heat conduction in an infinite plate with a variable boundary condition.

2. A technique of finding additional boundary conditions has been suggested. It is based on the use of the in-
itial differential equation and prescribed boundary conditions including the conditions at the temperature perturbation
front. Their application allows one, with a minimum number of approximations, to much better satisfy the basic dif-
ferential equation in the entire region of variation of the variable ξ (0 ≤ ξ ≤ 1), since this equation, due to the satisfac-
tion of additional boundary conditions, is fulfilled exactly at all of the points where the temperature perturbation front
is located at the corresponding values of Fourier number.

NOTATION

a, thermal diffusivity, m2/sec; ak(q1), bk(q2), unknown coefficients; q1(Fo), q2(Fo), time-dependent functions;
r1, r2, roots of characteristic equation; T, temperature, oC; T0, initial temperature, oC; Tw, wall temperature, oC; vav,
average velocity, m/sec; x, coordinate, m; δ, plate thickness, m; Θ, relative excess temperature; ξ, dimensionless coordi-
nate; τ, time, sec; Fo, Fourier number. Subscripts: 0, initial parameters; w, wall; av, average; ∞, parameters at infinity.

REFERENCES

1. T. Goodmen, Application of integral methods in the nonlinear problems of nonstationary heat transfer, in: Heat
Transfer Problems [Russian translation], Atomizdat, Moscow (1967), pp. 41–96.

2. Yu. S. Postol’nik, A method of averaging functional corrections on heat-conduction problems, in: Heat and
Mass Transfer [in Russian], Vol. 8, (1972), pp. 23–29.

3. M. E. Shvetz, Concerning the approximate solution of certain problems of the boundary layer hydrodynamics,
Prikl. Mat. Mekh., 13, No. 3 (1949).

4. M. Biot, Variational Principles in Heat Transfer [Russian translation], E′nergiya, Moscow (1975).
5. A. I. Veinik, Approximate Calculation of Heat-Conduction Processes [in Russian], Gose′nergoizdat, Moscow

(1975).
6. N. M. Belyaev and A. A. Ryadno, Methods of Unsteady-State Heat Conduction, Textbook for Higher Educa-

tional Institutions [in Russian], Vysshaya Shkola, Moscow (1978).
7. V. F. Formalev and D. L. Reviznikov, Numerical Methods [in Russian], Fizmatlit, Moscow (2004).
8. V. A. Kudinov, Method of coordinate functions in nonstationary heat-conduction problems, Izv. Ross. Akad.

Nauk, E′nergetika, No. 3, 84–107 (2004).
9. V. A. Kudinov, E′. M. Kartashov, and V. V. Kalashnikov, Analytical Solutions of Heat/Mass Transfer and

Thermoelasticity Problems for Multilayer Constructions, Textbook for Higher Educational Institutions [in Rus-
sian], Vysshaya Shkola, Moscow (2005).

460


